Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Classification using supervised learning requires annotating a large amount of classes-balanced data for model training and testing. This has practically limited the scope of applications with supervised learning, in particular deep learning. To address the issues associated with limited and imbalanced data, this paper introduces a sample-efficient co-supervised learning paradigm (SEC-CGAN), in which a conditional generative adversarial network (CGAN) is trained alongside the classifier and supplements semantics-conditioned, confidence-aware synthesized examples to the annotated data during the training process. In this setting, the CGAN not only serves as a co-supervisor but also provides complementary quality examples to aid the classifier training in an end-to-end fashion. Experiments demonstrate that the proposed SEC-CGAN outperforms the external classifier GAN (EC-GAN) and a baseline ResNet-18 classifier. For the comparison, all classifiers in above methods adopt the ResNet-18 architecture as the backbone. Particularly, for the Street View House Numbers dataset, using the 5% of training data, a test accuracy of 90.26% is achieved by SEC-CGAN as opposed to 88.59% by EC-GAN and 87.17% by the baseline classifier; for the highway image dataset, using the 10% of training data, a test accuracy of 98.27% is achieved by SEC-CGAN, compared to 97.84% by EC-GAN and 95.52% by the baseline classifier.
translated by 谷歌翻译
Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method.
translated by 谷歌翻译
Deep neural networks (DNNs) recently emerged as a promising tool for analyzing and solving complex differential equations arising in science and engineering applications. Alternative to traditional numerical schemes, learning-based solvers utilize the representation power of DNNs to approximate the input-output relations in an automated manner. However, the lack of physics-in-the-loop often makes it difficult to construct a neural network solver that simultaneously achieves high accuracy, low computational burden, and interpretability. In this work, focusing on a class of evolutionary PDEs characterized by having decomposable operators, we show that the classical ``operator splitting'' numerical scheme of solving these equations can be exploited to design neural network architectures. This gives rise to a learning-based PDE solver, which we name Deep Operator-Splitting Network (DOSnet). Such non-black-box network design is constructed from the physical rules and operators governing the underlying dynamics contains learnable parameters, and is thus more flexible than the standard operator splitting scheme. Once trained, it enables the fast solution of the same type of PDEs. To validate the special structure inside DOSnet, we take the linear PDEs as the benchmark and give the mathematical explanation for the weight behavior. Furthermore, to demonstrate the advantages of our new AI-enhanced PDE solver, we train and validate it on several types of operator-decomposable differential equations. We also apply DOSnet to nonlinear Schr\"odinger equations (NLSE) which have important applications in the signal processing for modern optical fiber transmission systems, and experimental results show that our model has better accuracy and lower computational complexity than numerical schemes and the baseline DNNs.
translated by 谷歌翻译
Recent studies on semi-supervised semantic segmentation (SSS) have seen fast progress. Despite their promising performance, current state-of-the-art methods tend to increasingly complex designs at the cost of introducing more network components and additional training procedures. Differently, in this work, we follow a standard teacher-student framework and propose AugSeg, a simple and clean approach that focuses mainly on data perturbations to boost the SSS performance. We argue that various data augmentations should be adjusted to better adapt to the semi-supervised scenarios instead of directly applying these techniques from supervised learning. Specifically, we adopt a simplified intensity-based augmentation that selects a random number of data transformations with uniformly sampling distortion strengths from a continuous space. Based on the estimated confidence of the model on different unlabeled samples, we also randomly inject labelled information to augment the unlabeled samples in an adaptive manner. Without bells and whistles, our simple AugSeg can readily achieve new state-of-the-art performance on SSS benchmarks under different partition protocols.
translated by 谷歌翻译
Mixed-precision quantization has been widely applied on deep neural networks (DNNs) as it leads to significantly better efficiency-accuracy tradeoffs compared to uniform quantization. Meanwhile, determining the exact precision of each layer remains challenging. Previous attempts on bit-level regularization and pruning-based dynamic precision adjustment during training suffer from noisy gradients and unstable convergence. In this work, we propose Continuous Sparsification Quantization (CSQ), a bit-level training method to search for mixed-precision quantization schemes with improved stability. CSQ stabilizes the bit-level mixed-precision training process with a bi-level gradual continuous sparsification on both the bit values of the quantized weights and the bit selection in determining the quantization precision of each layer. The continuous sparsification scheme enables fully-differentiable training without gradient approximation while achieving an exact quantized model in the end.A budget-aware regularization of total model size enables the dynamic growth and pruning of each layer's precision towards a mixed-precision quantization scheme of the desired size. Extensive experiments show CSQ achieves better efficiency-accuracy tradeoff than previous methods on multiple models and datasets.
translated by 谷歌翻译
Credit assignment problem of neural networks refers to evaluating the credit of each network component to the final outputs. For an untrained neural network, approaches to tackling it have made great contributions to parameter update and model revolution during the training phase. This problem on trained neural networks receives rare attention, nevertheless, it plays an increasingly important role in neural network patch, specification and verification. Based on Koopman operator theory, this paper presents an alternative perspective of linear dynamics on dealing with the credit assignment problem for trained neural networks. Regarding a neural network as the composition of sub-dynamics series, we utilize step-delay embedding to capture snapshots of each component, characterizing the established mapping as exactly as possible. To circumvent the dimension-difference problem encountered during the embedding, a composition and decomposition of an auxiliary linear layer, termed minimal linear dimension alignment, is carefully designed with rigorous formal guarantee. Afterwards, each component is approximated by a Koopman operator and we derive the Jacobian matrix and its corresponding determinant, similar to backward propagation. Then, we can define a metric with algebraic interpretability for the credit assignment of each network component. Moreover, experiments conducted on typical neural networks demonstrate the effectiveness of the proposed method.
translated by 谷歌翻译
We report the result of the first edition of the WMT shared task on Translation Suggestion (TS). The task aims to provide alternatives for specific words or phrases given the entire documents generated by machine translation (MT). It consists two sub-tasks, namely, the naive translation suggestion and translation suggestion with hints. The main difference is that some hints are provided in sub-task two, therefore, it is easier for the model to generate more accurate suggestions. For sub-task one, we provide the corpus for the language pairs English-German and English-Chinese. And only English-Chinese corpus is provided for the sub-task two. We received 92 submissions from 5 participating teams in sub-task one and 6 submissions for the sub-task 2, most of them covering all of the translation directions. We used the automatic metric BLEU for evaluating the performance of each submission.
translated by 谷歌翻译
The complicated architecture and high training cost of vision transformers urge the exploration of post-training quantization. However, the heavy-tailed distribution of vision transformer activations hinders the effectiveness of previous post-training quantization methods, even with advanced quantizer designs. Instead of tuning the quantizer to better fit the complicated activation distribution, this paper proposes NoisyQuant, a quantizer-agnostic enhancement for the post-training activation quantization performance of vision transformers. We make a surprising theoretical discovery that for a given quantizer, adding a fixed Uniform noisy bias to the values being quantized can significantly reduce the quantization error under provable conditions. Building on the theoretical insight, NoisyQuant achieves the first success on actively altering the heavy-tailed activation distribution with additive noisy bias to fit a given quantizer. Extensive experiments show NoisyQuant largely improves the post-training quantization performance of vision transformer with minimal computation overhead. For instance, on linear uniform 6-bit activation quantization, NoisyQuant improves SOTA top-1 accuracy on ImageNet by up to 1.7%, 1.1% and 0.5% for ViT, DeiT, and Swin Transformer respectively, achieving on-par or even higher performance than previous nonlinear, mixed-precision quantization.
translated by 谷歌翻译
We present a multi-view inverse rendering method for large-scale real-world indoor scenes that reconstructs global illumination and physically-reasonable SVBRDFs. Unlike previous representations, where the global illumination of large scenes is simplified as multiple environment maps, we propose a compact representation called Texture-based Lighting (TBL). It consists of 3D meshs and HDR textures, and efficiently models direct and infinite-bounce indirect lighting of the entire large scene. Based on TBL, we further propose a hybrid lighting representation with precomputed irradiance, which significantly improves the efficiency and alleviate the rendering noise in the material optimization. To physically disentangle the ambiguity between materials, we propose a three-stage material optimization strategy based on the priors of semantic segmentation and room segmentation. Extensive experiments show that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively, and enables physically-reasonable mixed-reality applications such as material editing, editable novel view synthesis and relighting. The project page is at https://lzleejean.github.io/TexIR.
translated by 谷歌翻译